CONFOBRMAL MAPPING IN CALCULATING THE
SOLIDIFICATION OF A COMPLEX CASTING

Yu. A. Samoilovich UDC 536.42

An approximate method is given for calculating the golidification of a complex casting on the
basis of a quasistationary approach and the use of conformal transformation. The solution
to the two-dimensgional Stefan's problem is illustrated by the solidification of a melt in
wedges of angle up to 27

Profile castings and other such items have a great variety of geometrical forms;preference is often
given to casting in preparing objects of complex shape, since one then often cannot use welding, forging, or
stamping. On the other hand, existing methods of calculating easting solidification [1-8] allow one to cal-
culate the motion of the solid {ront only for very simple geometrical forms such as plate, cylinder, or
sphere. Exact solution of Stefan's problem (the bagis of the golidification) is difficult and involves approxi-
mate methods, e.g., an integral balance relation, which can incorporate the enthalpy change in the solid
crust and the heat released by the phase transition. This method was first used by Leibenzon in 1939 [9]for
bodies of simple shape and provided simple working formulas for the thickness of the solid crust as a
function of time.

We have derived comparatively simple working formulas as in [9] that define the shape of the solidi-
fication front and the speed for more complex castings; the initial assumptions are as follows:

a) the melt filling the mould is a metal or alloy with a very narrow crystallization range and such
that the phase-transition temperature can be considered as constant at Tgy;

b) we neglect any convection in the melt, whatever the cause (jet motion during pouring, nonuniform
density, etc);

c) any superheating is neglected, i.e., we assume that the liquid is at the crystallization point through-
out the process;

d) the thermophysical characteristics of the material (A, o, and c;) do not vary during the process;

e) we congider the two-dimensional temperature distribution and heat-flux pattern in the solid crust.
The working regions in the cross section have the following features:

1) a working region is two-dimensional and planar;
2) such a region is singly coupled;

3) the region is represented by the curvilinear rectangle ABCD (Fig. 1), in
which the isothermal part of the solidification front BC is separated from
the cooled surface AD by the adiabatic parts AB and CD. A working re-
gion that satisfies these three conditions is said to be a region of canon-
ical form;

Fig. 1. Calculation
region of canonical
form.

. f) the temperaturé is assumed to be identical throughout the cooled part of
the working region and unvarying (boundary condition of the first kind).
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@ These simplifying assumptions concern the physi-

v r=T
& cal state of the melt and the geometrical features of the
: region, and they are accompanied by the three following
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an, 90 postulates ag to the solidification.
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e Tr:rS main of the same shape throughout the process (self-
P Y Y/ T modelling postulate).
4 2
Fig. 2. Mapping of a calculation region of It is clear that this mode of solidification occurs
canonical form on a rectangle. when there are no sharp changegs in the parameters of

the cooling medium; an experimental confirmation of
the postulate has been given ([10], p. 60) for castings
solidifying in wedges.

B. The law of conservation of energy for a working region of canonical form is represented by

s

dt ®

!
( (7» T > dl — o[L-Fc, (Te — T
on Jy,

The left side of this equation represents the heat consumption (per unit layer thickness) due to the
cooled part of the casting y, of length I, while the right side incorporates the heat released by the phase
transition and the enthalpy change in the solid crust as the temperature falls from T, to T, with T(t)

il

= 1/SJ

n

[T(x, y, t)dxdy the mean-mass temperature of the solid crust at time t and S{t) = dxdy the area

. s
of cross section of the golid crust at time t.

C. The temperature distribution in the working region of canonical form is determined by the solution
for the corresponding problem in stationary heat conduction.

The latter postulate is an expression of the quasistationary approach to this case.

Analysis indicates that the error in determining the solidification time from the quasistationary ap-
proach does not exceed 8-10%, which is quite acceptable for engineering purposes.

The quasistationary postulate allows us to perform conformal mapping of the working region of
canonical form and thus to produce an approximate solution.

We now show how conformal mapping can be used to calculate the solidification of a complex casting.

We introduced two planes of the complex variable Z = X + iY and w = u + iv; in the Z plane we select
a working region d of canonical form bounded by isotherms (T = Ty, T = Tg) and current lines forming a
mutually orthogonal net; the analytical function

o=u-+iv=F() (2)

is used to map region d on region D (w plane), the latter being of simpler form, on the basis that the solu-
tion to the stationary heat-conduction problem for region D is known and has a simple form. We assume
that the function w = f(Z) coincides apart from the real constants A and B with the complex thermal poten-
tial W(2), i.e.,

W(Z)=An(Z)--B = Q - i8, 3)

from which we conclude that the straight lines v = const and u = const are the mapping of the isotherms
and current lines on the w plane. In the example considered below, the working region ABCD of canonical
form is mapped into the band (rectangle) abed, whose boundaries ab and cd are isotherms, while the bound-
aries be and da are adiabatic current lines (Fig. 2). The stationary temperature distribution in the band
abcd ig one~-dimensgional and linear:

T:T(U)_:Ts’i (Tcr—Ts)_v-U] , )
Up—
and so
aT N Tcr—‘TS, o 1
o — s T—‘g(Tcr J%“Ts)' )



Fig. 3. Selection of calculation region for a corner in
a casting,

On transferring from the variables x and y to the new variables u and v the equation for the heat balance of
(1) becomes

Uz

S'x( '6T> du=p[L+c,(Te —T)] di(t) (6

ov

Ty

or from (5)

oy te—ty _ ds @)
Ml =Ty 2% [ (c,—Ts)] b ™
The area of cross section of the casting at time t is
S = X j.dxd_tr—lz 5 jldXdY,
(S) (S)
or on trangferring to the variables u and v,
NGES lz‘”‘dXdY = lzng(u, v) dudv, (8)

where D(u, v) is a functional determinant (Jacobian), whose expression takes the following form ([11], p
246):
X oY 0X oYy

D(u, v)= — .
@ 0) ou Ov dv  du ©)

The relationships

X=Xu v, Y=Y, v 10)
can be found by inverting the mapping function of (2), i.e.,
’ ' Z= X1 iY =, (a), 1)
and by comparing the real and imaginary parts of the latter equation., Since
as _ S &@ , (12)
dt ot dt

where £(t) = v,(t) is the value of the coordinate v = const correspondmg to the position of the solidification
front at time t, we have

S dk

D, ¥d (13)
Tdt dt J w, &du

2%
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and (7) becomes

Uy — Uy

A (Tcr - Ts)

\
A\

Uy — U,

%

We assume for simplicity that uy =0,v,; =0, u, =1, v, =£, and then
the latter equation takes the form

WK
\

i

AR

0 4% ] 12 G(&) A Ter — T, dt '
} /) ¢y (Ter —T) = 7 zgdgj D(u, &du. (15)
Fig. 4. Melt solidification at 0y L z'zlx - _9__“’__‘_5)} )
corners with angles « that are 2L
multiples of r/4: 1) n/4; 2} n/2; We introduce the dimensionless complexes
3)3n/4;4) w; 5)57/4; 6)371/2;7) N f ¢, (Ter — T P Tor—T.
. —_— =, = =K, = 5
zwé425) i [ZKGS/(Z i KGS)] ! 0c, 2 L " Tcr "‘Tm
= Gp@).
and integrate (15) subject to the initial condition
E=0 for =0, (16)
to get the solution in the form
E i
2K8 *
I = dt \ D(u, &) du,
ST [pws an
[1] 0

where the geometrical features of the working region are incorporated in D.

As an example of the use of (17) we consider the solidification of a melf at a corner (angles up to 27);
Fig. 3 shows the various possible styles.

The working region OBCD (Fig. 3a) is bounded by the cool part OB, the isotherm CD, and the two
adiabatic current lines BC and OD. We introduce the parameter p = n/a. The working region ig repre-
sented by o between 0 and 360°, which corresponds to values of p = 7/ from 1/2 to infinity, and in particu-
lar in the first quadrant (/2 =« > 0)2 = p < ©, while in the second quadrant (r = ¢ = 7/2)1= p = 2, in the
third quadrant (37/2 = o = 7)2/3 < p < 1, and in the fourth quadrant (27> o = ar/2)1/2< p=<2/3.

The analytical function
W=1u-ly=2° (18)

represents conformally the working region OBCD in the band obed, and the Jacobian is

1 _
D:__;r(uzﬂ{ vi)(‘/P) 1‘

(19)
We use the general solution of (17) to find from (19) that
! 1
~—2—]<G—ST=—1—~*§<U2~J[‘§2)pdu———}‘—, (20)
2 -+ Ko, 2p ) 2(p+2)

The thickness of the layer of solid crust € in the direction of the bisector of ¢ is related to £ by
e(f) = £ (3), (21)

which follows from the correspondence between the points in D and d:

€ 3 frd . g\ . x g \?
mp=—,0p=m=——,u;=0, vy,=§=rphsin 9:(—~) sm—:(h .
PETP T g T gy e a=E=rosinp ! 2

For a = 90° (Fig. 3b) the time dependence of £ takes the form

9K8s 1, 1+VIFE | )
Parameter ¢ is related to € along OE by
ey =1V EQ) , @3)
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which follows from the correspondence between the points in D and d:

2
Xp=Y :—E—cosi, u; =0, v, = :2(icos-n— =[E).
PET T T @ =t ! !

For o = 270° (for p = 2/3) we have (Fig. 3f):
e(t) = £ (v).

For this case the golution of (20) is taken in quadratures and takes the form
oK o[ & 14V i4E 1 2482 z*/ﬂ]

The form of the solidification front at an interior right angle (for o = 270°) is determined from the condition
v = £(t) subject to the expressions

(24)

£ =r"Psin —g— 6 = const, r = (X2 + Y3, g = arctg% ,
whence

—x2 v Bgn | 2 Y
E(l)=(X*-1- V¥ sm(sarctgx).

The integral in (20) can be found numerically for arbitrary values of a.
Figure 4 shows results for angles that are multiples of x/4, i.e., for o = x/4, /2, 4x/3, etc.

The ratio €,/¢, gives anindication of how « influences the speed of the front, where € is the thickness
of the crust for o = 180°, i.e., under the conditions of Stefan's problem. This method of incorporating the
effects of the angle between conjugate planes has been used [10] in experiments on solidification.

Note that within the range of variation in Kég and 7 of practical interest for metallic castings, the
ratio g/e, is not a constant (Fig. 4), but the limits of variation are not too large and are as follows: g¢/e,
= 2.2-2.7 for o = 45% eg/ee = 1.5-1.8 for a = 90° €35/, = 1.2-1.35 for a = 135° €y5/ec = 0.76-0.84 for
= 225° €,7/€c = 0.66-0.74 for o = 270°% &3y5/ec = 0.50-0.64 for o = 315°% €34/ec = 0.40-0.53 for o = 360°.

For comparison, we give measured values from the data of [10] (p. 60): g45/ec = 2.9-3.1; €35/¢¢
=1.25-1.4; e4/ec = 1.6-1.9; €,/ = 0.48-0.7.

It may be seen that the calculated e,/ec agree satisfactorily with the experimental values due to
Gulyaev. '

NOTATION
T is the temperature;
Tops T are the crystallization temperature and temperature of cooling
medium, respectively;
t is the time;
X,y are the coordinates;
A, 0, Cy, L are the thermal conductivity, density, specific heat, and latent
heat of fusion, respectively;
i is the characteristic linear dimension;
Qy is the heat flow rate per unit time per unit bed thickness;
i=V1,i%=-1; Q = Q/MTer—Tyy) is the dimensionless heat flow rate;
6= (T—Tw)/ (Ter—Tm) is the dimengionless temperature;
X=x/1,Y=y/l are the dimensionless coordinates;
K = ¢y (Tgp—Tpy)/L is the thermophysical criterion;
1 = (Mocy ) (t4%) ig the Fourier number.
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